Categories
Powder Coating Equipment Manufacturer

Powder Coating Equipment

Powder Coating Equipment
Powder Coating Equipment

Powder coating equipment is used to apply a dry powder coating to a metal surface. The powder coating is then cured using heat, resulting in a durable and long-lasting finish. Powder coating equipment is used in a variety of industries, including automotive, aerospace, and electronics.

Powder Coating Equipment

Powder coating equipment encompasses a range of machinery and tools used to apply and cure powder coatings onto various substrates. This equipment plays a crucial role in various industries, including automotive, appliance, furniture, electronics, construction, and aerospace.

Essential Components of Powder Coating Equipment

A typical powder coating setup involves several key components:

  1. Pre-Treatment System: This system prepares the workpiece surface for powder adhesion by removing contaminants like grease, oil, and rust. It may involve degreasing, etching, and phosphating.
  2. Powder Booth: The booth provides a controlled environment for applying the powder coating, preventing overspray and contamination of the surrounding environment.
  3. Powder Coating Guns: These guns apply the powder onto the workpieces using electrostatic or mechanical principles. Electrostatic guns impart a charge to the powder particles, attracting them to the grounded workpiece, while mechanical guns rely on air pressure to atomize and propel the powder.
  4. Reciprocator or Robot Arm: This device moves the powder coating guns back and forth over the workpieces, ensuring uniform and consistent powder distribution. Reciprocators are typically used for flat or evenly shaped workpieces, while robot arms offer greater flexibility for complex shapes.
  5. Curing Oven: The curing oven cures the applied powder coating, transforming it into a durable and hard finish. It heats the powder particles to a specific temperature for a specified time, allowing them to melt, flow, and crosslink.
  6. Workpiece Handling System: This system transports the workpieces through the various stages of the powder coating process, maintaining proper positioning and orientation. It may involve conveyor belts, rotating turntables, or automated robotic systems.
  7. Control System: The control system oversees the entire powder coating process, coordinating the operation of the different components, regulating the powder application, and monitoring the curing parameters.

Types of Powder Coating Equipment

Powder coating equipment can be categorized into different types based on the application method, automation level, and workpiece size and shape:

  1. Manual Powder Coating Equipment: This setup involves manual application of powder using handheld guns, making it suitable for small-scale or low-volume production.
  2. Automatic Powder Coating Equipment: This system automates the powder application process, significantly increasing production rates and achieving consistent coating quality.
  3. Reciprocating Powder Coating Systems: These systems utilize a reciprocator to move the powder coating guns over the workpieces, ensuring uniform powder distribution and high-quality finishes.
  4. Robotic Powder Coating Systems: These systems employ robot arms to move the powder coating guns, offering exceptional flexibility and precision, particularly for complex workpieces or intricate coating requirements.
  5. Batch Powder Coating Systems: These systems are designed for batch processing, where a batch of workpieces is moved through the powder coating stages simultaneously.
  6. Continuous Powder Coating Systems: These systems are suitable for high-volume production, continuously feeding workpieces into the powder coating process.
  7. Powder Coating Equipment for Specific Applications: There are specialized powder coating systems tailored to specific applications, such as automotive, appliance, and furniture coating.
  8. Powder Recovery Systems: These systems collect and recycle overspray powder, reducing waste and minimizing environmental impact.

Selection Criteria for Powder Coating Equipment

The choice of powder coating equipment depends on several factors:

  1. Production Volume: For high-volume production, automatic systems are essential.
  2. Workpiece Size and Shape: Complex workpieces may require robotic systems, while reciprocating systems are suitable for flat or evenly shaped workpieces.
  3. Desired Coating Quality: Automation and advanced guns ensure consistent coating quality.
  4. Budget: Manual systems are cost-effective for small-scale operations, while automated systems offer higher productivity and quality for larger volumes.
  5. Environmental Considerations: Powder recovery systems minimize environmental impact.

Conclusion

Powder coating equipment plays a crucial role in achieving high-quality, durable, and environmentally friendly finishes for a wide range of products. By selecting the appropriate equipment, optimizing the powder coating process, and maintaining proper maintenance, manufacturers can enhance their production efficiency, reduce costs, and deliver superior powder-coated products to their customers.

The Main Components of a Powder Coating System

The main components of a powder coating system are:

  • Powder coating gun: The powder coating gun applies the powder coating to the metal surface.
  • Curing oven: The curing oven cures the powder coating by heating it to a specific temperature.
  • Powder coating booth: The powder coating booth is an enclosed area where the powder coating is applied. The booth is equipped with filters to capture overspray powder.

Powder Coating Gun

The powder coating gun is the most important component of a powder coating system. It is responsible for applying the powder coating to the metal surface. There are two main types of powder coating guns: electrostatic powder coating guns and kinetic powder coating guns.

Electrostatic Powder Coating Guns

Electrostatic powder coating guns use an electric charge to attract the powder coating particles to the metal surface. This results in a more uniform coating and less overspray. Electrostatic powder coating guns are typically more expensive than kinetic powder coating guns, but they are also more efficient and produce less waste.

Kinetic Powder Coating Guns

Kinetic powder coating guns use a stream of air to propel the powder coating particles towards the metal surface. This type of equipment is typically less expensive than electrostatic powder coating equipment, but it produces more overspray. Kinetic powder coating guns are a good option for low-volume powder coating operations or for applications where a high-quality finish is not required.

Curing Oven

The curing oven cures the powder coating by heating it to a specific temperature. The curing temperature and time will vary depending on the type of powder coating being used. Curing ovens can be either batch or continuous. Batch curing ovens are used for low-volume powder coating operations, while continuous curing ovens are used for high-volume powder coating operations.

Powder Coating Booth

The powder coating booth is an enclosed area where the powder coating is applied. The booth is equipped with filters to capture overspray powder. Overspray powder is the powder coating that does not adhere to the metal surface. It is important to capture overspray powder because it can create a number of problems, including:

  • Reduced air quality
  • Increased cleanup time
  • Reduced powder coating efficiency
  • Environmental pollution

Powder coating booths can be either downdraft or sidedraft. Downdraft booths are more common than sidedraft booths because they are more effective at capturing overspray powder. Downdraft booths work by drawing air down through the booth and filtering it before it is exhausted to the atmosphere.

Powder Coating Gun

Powder Coating Equipment
Powder Coating Equipment

A powder coating gun is a tool used to apply a dry powder coating to a metal surface. The powder coating is then cured using heat, resulting in a durable and long-lasting finish. Powder coating guns are used in a variety of industries, including automotive, aerospace, and electronics.

Types of Powder Coating Guns

There are two main types of powder coating guns: electrostatic powder coating guns and kinetic powder coating guns.

Electrostatic Powder Coating Guns

Electrostatic powder coating guns use an electric charge to attract the powder coating particles to the metal surface. This results in a more uniform coating and less overspray. Electrostatic powder coating guns are typically more expensive than kinetic powder coating guns, but they are also more efficient and produce less waste.

Kinetic Powder Coating Guns

Kinetic powder coating guns use a stream of air to propel the powder coating particles towards the metal surface. This type of equipment is typically less expensive than electrostatic powder coating equipment, but it produces more overspray. Kinetic powder coating guns are a good option for low-volume powder coating operations or for applications where a high-quality finish is not required.

Components of a Powder Coating Gun

The main components of a powder coating gun are:

  • Gun body: The gun body is the main housing of the powder coating gun. It contains the powder coating feeder, the air nozzle, and the electrical components (for electrostatic powder coating guns).
  • Trigger: The trigger is used to control the flow of powder coating from the feeder to the nozzle.
  • Nozzle: The nozzle is responsible for atomizing the powder coating and applying it to the metal surface.
  • Powder coating feeder: The powder coating feeder delivers the powder coating to the nozzle.
  • Electrostatic charge generator: The electrostatic charge generator (for electrostatic powder coating guns) generates an electric charge that is applied to the powder coating particles.

How to Use a Powder Coating Gun

To use a powder coating gun, follow these steps:

  1. Prepare the metal surface for powder coating by cleaning and removing any contaminants.
  2. Connect the powder coating gun to a power source and to a compressed air source.
  3. Set the powder coating feeder to the desired flow rate.
  4. Aim the powder coating gun at the metal surface and pull the trigger to apply the powder coating.
  5. Move the powder coating gun in a smooth and even motion across the metal surface.
  6. Once the powder coating has been applied, cure the powder coating by heating it to a specific temperature.

Tips for Using a Powder Coating Gun

Here are some tips for using a powder coating gun:

  • Use a powder coating that is compatible with the type of metal surface you are coating.
  • Clean and prepare the metal surface before applying the powder coating.
  • Use a ground clamp to connect the metal surface to the powder coating gun. This will help to prevent the powder coating from clumping and will also help to reduce overspray.
  • Hold the powder coating gun perpendicular to the metal surface.
  • Move the powder coating gun in a smooth and even motion across the metal surface.
  • Overspray can be collected and reused.
  • Be sure to clean the powder coating gun after each use.

Curing Oven

Curing oven as a Powder Coating Equipment
Curing oven as a Powder Coating Equipment

A curing oven is a piece of equipment used to cure powder coating. Powder coating is a dry powder that is applied to a metal surface and then cured using heat. The curing process melts the powder coating particles and forms a durable and long-lasting finish.

Types of Curing Ovens

There are two main types of curing ovens: batch curing ovens and continuous curing ovens.

Batch Curing Ovens

Batch curing ovens are used for low-volume powder coating operations. In a batch curing oven, the parts are loaded into the oven and then heated to a specific temperature for a specific amount of time. Once the curing process is complete, the parts are removed from the oven.

Continuous Curing Ovens

Continuous curing ovens are used for high-volume powder coating operations. In a continuous curing oven, the parts are conveyed through the oven on a conveyor belt. The oven is heated to a specific temperature and the parts are cured as they pass through the oven.

Components of a Curing Oven

The main components of a curing oven are:

Oven Chamber

The oven chamber is the main housing of the curing oven. It is where the parts are placed to be cured.

Heating Elements

The heating elements are responsible for heating the oven chamber to a specific temperature. Heating elements can be electric, gas, or infrared.

Conveyor Belt

The conveyor belt (for continuous curing ovens) conveys the parts through the oven chamber at a controlled speed.

Insulation

The insulation helps to keep the heat inside the oven chamber and prevents it from escaping to the outside.

Exhaust System

The exhaust system removes fumes and VOCs (volatile organic compounds) from the oven chamber.

How to Use a Curing Oven

To use a curing oven, follow these steps:

  1. Load the parts into the oven chamber.
  2. Set the oven temperature to the recommended curing temperature for the powder coating being used.
  3. Set the curing time to the recommended curing time for the powder coating being used.
  4. Start the oven and allow the parts to cure.
  5. Once the curing process is complete, remove the parts from the oven.

Tips for Using a Curing Oven

Here are some tips for using a curing oven:

  • Be sure to load the parts into the oven chamber evenly. This will help to ensure that all of the parts are cured uniformly.
  • Do not overcrowd the oven chamber. Overcrowding can prevent the hot air from circulating properly and can result in uneven curing.
  • Be careful not to overheat the parts. Overheating can damage the powder coating and reduce its lifespan.
  • Allow the oven to cool down completely before removing the parts. This will help to prevent the powder coating from chipping or peeling.

Powder Coating Booth

Open Face Spray Booth as a Powder Coating Equipment
Open Face Spray Booth as a Powder Coating Equipment

A powder coating booth is an enclosed area where powder coating is applied to metal surfaces. The booth is equipped with filters to capture overspray powder. Overspray powder is the powder coating that does not adhere to the metal surface. It is important to capture overspray powder because it can create a number of problems, including:

  • Reduced air quality
  • Increased cleanup time
  • Reduced powder coating efficiency
  • Environmental pollution

Types of Powder Coating Booths

There are two main types of powder coating booths: downdraft and sidedraft booths.

Downdraft Booths

Downdraft booths are the most common type of powder coating booth. They are more effective at capturing overspray powder than sidedraft booths because they draw air down through the booth and filter it before it is exhausted to the atmosphere.

Sidedraft Booths

Sidedraft booths are less common than downdraft booths because they are less effective at capturing overspray powder. However, sidedraft booths are less expensive than downdraft booths and they may be a good option for low-volume powder coating operations.

Components of a Powder Coating Booth

The main components of a powder coating booth are:

  • Booth enclosure: The booth enclosure is the main structure of the powder coating booth. It is typically made of metal or plastic.
  • Filters: The filters capture overspray powder and prevent it from being exhausted to the atmosphere.
  • Exhaust system: The exhaust system removes overspray powder and fumes from the booth enclosure.

How to Use a Powder Coating Booth

To use a powder coating booth, follow these steps:

  1. Place the parts to be coated in the booth enclosure.
  2. Apply the powder coating to the parts using a powder coating gun.
  3. Allow the parts to cure completely.
  4. Remove the parts from the booth enclosure.

Tips for Using a Powder Coating Booth

Here are some tips for using a powder coating booth:

  • Keep the booth enclosure clean and free of debris. This will help to prevent overspray powder from accumulating and becoming a fire hazard.
  • Inspect the filters regularly and replace them when necessary. Clogged filters can reduce the airflow in the booth and prevent it from capturing overspray powder effectively.
  • Be sure to operate the exhaust system when using the powder coating booth. This will help to remove overspray powder and fumes from the booth enclosure.

Conclusion

Powder coating equipment is a versatile and efficient way to apply a durable and long-lasting finish to metal surfaces. By choosing the right equipment and using it properly, you can ensure that your products are protected and that they will last for many years.

Additional Components of a Powder Coating System

In addition to the three main components, powder coating systems may also include the following:

  • Powder coating feeder: The powder coating feeder delivers the powder coating to the powder coating gun.
  • Powder coating recovery system: The powder coating recovery system collects and reuses overspray powder.
  • Pre-treatment system: The pre-treatment system prepares the metal surface for powder coating by cleaning and removing any contaminants.
  • Post-treatment system: The post-treatment system applies a topcoat to the powder coating to improve its appearance and performance.

Powder Coating Feeder

The powder coating feeder delivers the powder coating to the powder coating gun. Powder coating feeders can be either manual or automatic. Manual powder coating feeders are typically used for low-volume powder coating operations, while automatic powder coating feeders are used for high-volume powder coating operations.

Powder Coating Recovery System

The powder coating recovery system collects and reuses overspray powder. Powder coating recovery systems can save businesses money on powder coating costs and reduce their environmental impact.

Pre-Treatment System

The pre-treatment system prepares the metal surface for powder coating by cleaning and removing any contaminants. Common pre-treatment processes include degreasing, rinsing, and phosphating.

Post-Treatment System

The post-treatment system applies a topcoat to the powder coating to improve its appearance and performance. Common post-treatment processes include clear coating and UV curing.

Choosing the Right Powder Coating Equipment

When choosing powder coating equipment, it is important to consider the following factors:

  • The type of powder coating being used
  • The size and shape of the parts being coated
  • The production volume
  • The budget

The type of powder coating being used will determine the type

Description of EMS Powder coating equipment

  • Highest finishing quality
  • High fluidization for smooth and constant application of difficult powders Efficient powder transfer Easy to operate:
  • Less than 2 minutes from training to production
  • Performance
  • Constant and stable spray pattern for smooth and even applications
  • Well-balanced gun for easy maneuvering
  • Quickstart
  • Quick and easy adjustment of the height for easy information reading
  • EMS technology delivers a high-quality finish
  • Smooth powder flow with low velocity due to the fluidized hopper
  • No puffing Productivity
  • Powerful cascade providing a strong wraparound effect
  • Advanced HV control for excellent penetration of complex-shaped parts
  • Simple and instant control of powder flow rate
  • High transfer efficiency to reduce the processing time
  • Self-locking hook to both maintain the gun and the pump during cleaning
  • Dedicated footrest to easily move the cart Sustainability
  • Unsurpassed cascade performance lifetime
  • All wear parts are monitored on the controller to encourage proper preventative maintenance
  • Stainless steel hopper for industrial use
  • Designed for industrial use
  • Built with proven and high-quality components
  • 1-year warranty

Automatic powder coating equipment is powder spray equipment typically used to powder coat parts on a conveyor line. Here the automatic spray guns are triggered continuously and they coat the parts without delay and pause. Here the capacity is high and all the automatic powder coating equipment in the booth is all arranged with the same parameters.

Reasonably Foreseeable Misuse of the Powder Coating Equipment

The following is prohibited:

  • Coating workpieces that are not grounded, unauthorized conversions and modifications to the spray gun, processing liquid or similar coating products,
  • Using defective components, spare parts, or accessories other than those described in Chapter 12 of this operating manual.
  • The forms of misuse listed below may result in physical injury or property damage:
  • Use of damp powder lacquer
  • Incorrectly set values for powder discharge
  • Incorrectly set electrostatic values
  • Use of defective components and accessories
  • Use for foodstuff s
  • Use in the pharmaceutical sector
  • Use with non-authorized control units
Powder Coating Equipment for Sale
Powder Coating Equipment for Sale

Information about Safe Discharges

With the high-voltage switch on, a luminous or corona discharge occurs at the electrode tip; this can only be seen in the dark. This physical effect can be seen when the electrode is brought near the grounded workpiece. This luminous discharge does not involve any ignition energy and has no effect on system handling.

When the electrode approaches the work piece, the control unit automatically reduces the high voltage to a safe value. If you touch plastic parts of the spray gun with your finger, harmless discharges may occur due to the high-voltage field around the spray gun (so-called brush discharges). However, these do not contain any ignition energy.

Functioning of the Spray Gun

High-voltage is activated in the manual gun when the trigger is actuated! The powder supply and air supply to the gun are activated at the same time. The control unit must be switched off in order to lock the spray gun.
To prevent electrostatic flashover, the union nut for securing the nozzles is designed with a labyrinth.

Storage Conditions of the Powder Coating Equipment

Until the point of assembly, the powder spray gun must be stored in a dry location, free from vibrations and with a minimum of dust. The powder spray gun must be stored in closed rooms. The air temperature at the storage location must be between 5 – 45 °C; 41 – 113 °F. The relative air humidity at the storage location must not exceed 75%.

Installation Conditions of the Powder Coating Equipment

The air temperature at the assembly site must be between 5 – 45 °C; 41 – 113 °F. Depending on the powder lacquer used, the maximum permissible ambient temperature for reliable operation can be significantly below +40 °C; 104 °F. The relative air humidity at the assembly location must not exceed 75%.

Connecting the Spray Gun

  1. Switch off the high-voltage generation on the control unit.
  2. Before connecting the spray gun, check that all components (such as the nozzle system and union nut) are correctly fitted.
  3. Connect the electrical cable of the spray gun to the control unit.
  4. Connect the powder feed hose to the spray gun and to the powder injector.
  5. Connect the atomizing air hose to the spray gun and to the control unit

Grounding of the Powder Coating Equipment

For safety reasons, the control unit must be properly grounded. The ground connection to the energy supply (socket) takes the form of the mains connection cable’s protective conductor, while that to the workpiece/system is via the knurled screw on the rear of the control unit.

Both connections are absolutely essential. If installed correctly as described above, the spray gun is grounded via the gun cable between the control unit and spray gun. Good grounding of the workpiece is also necessary for optimum powder coating.

A poorly grounded workpiece causes:

  • Dangerous electric charging of the workpiece
  • Very poor wrap-around,
  • Uneven coating
  • Back spraying to the spray gun, i.e. contamination.
  • Prerequisites for perfect grounding and coating are:
  • Clean workpiece suspension.
  • Grounding of spray booth, conveyor system, and suspension on the building side in accordance with the operating manuals or the manufacturer’s information.
  • Grounding of all conductive parts within the working area.
  • The grounding resistance of the workpiece may not exceed 1 MΩ (megohm).
  • (Resistance to ground measured at 500 V or 1,000 V)
  • The footwear worn by the operators must comply with the requirements of EN ISO 20344. The measured insulation resistance must not exceed 100 MΩ (megohms).
  • The protective clothing, including gloves, must comply with the requirements of EN ISO 1149-5. The measured insulation resistance must not exceed 100 MΩ (megohms)
Powder Coating Equipment
Powder Coating Equipment

Cleaning of the Powder Coating Equipment

The cleaning intervals should be adapted by the operator depending on the level of use and if necessary the level of soiling. If in doubt, we recommend contacting J. EMS Powder Coating Equipment’s specialist personnel. The valid health and safety specifications and the safety instructions provided in Chapter 4 must be adhered to for all cleaning work

What is Powder Coating?

What is powder coating, why should I consider using it, and how will it work in my operation are questions that every finisher needs to be asking
today. Briefly, these questions can be answered as follows:

The powder is a dry, clean finish that gives a highly durable coating, in the long run, the powder will save you money, and a powder coating system can be designed to meet just about any requirement your operation may have.

The purpose of this booklet is to explain quickly and simply how powder coating delivers these highly desirable solutions to many finishing problems, and provides you with a practical, worksheet approach, to help you decide if moving to powder is the right move for you.

Over the past decade, powder coating has been increasingly accepted as the preferred finishing process for the future.

The reasons for this conversion from wet to dry can be attributed to three major forces:

  • Economy — the high cost of energy and materials require a more cost-effective and less wasteful process;
  • Excellence — consumers, and other end users, are demanding higher quality and more durable finishes; and
  • Ecology — progressively more stringent regulations are being aggressively enforced in an effort to control air pollution and hazardous waste disposal.

Which in turn goes back to the economy. The cost of complying with the Regulations and the disposal of toxic and flammable waste are constantly rising

Why to use Powder Coating?

Many companies have found that it is less expensive to convert to powder then to bring their wet systems into compliance! With strong financial arguments providing the necessary stimulus, therefore, powder coating technology has evolved quickly.

The quality and variety of powders available have grown as an increasing number of companies get involved with its production; and the technology for spraying the powder, collecting it, and reusing it, is constantly improving transfer efficiencies and material utilization, and reducing color change times.

Early perceptions that powder was too difficult to control, too costly to install, too time-consuming for the color change, or did not provide enough choice of color are largely
obsolete today.

But the move to totally new technology can still be confusing. This brochure is designed to make your decision easier, providing both explanations and justifications to help determine the right solution for you. So let’s start at the beginning and work through the questions.